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A Study of Dielectric Resonators Based on
Two-Dimensional Fast Wavelet Algorithm

Kazem F. Sabet and Linda P. B. Katehi

Abstract—This letter reports the implementation of orthonor-
mal wavelets for the moment method characterization of three-
dimensional dielectric structures. The formulation is based on a
3-D volume integral equation, which is solved numerically using
a 2-D multiresolution analysis in conjunction with a sub-domain
pulse basis. The use of multiresolution expansions leads to highly
sparse linear systems that can be solved very efficiently using
the bi-conjugate gradient method. To speed up the numerical
evaluation of moment integrals, the fast wavelet algorithm (FWA)
has been employed.

1. INTRODUCTION

HE numerical modeling of dielectric resonators has been

investigated by several authors [1]-[3]. As new complex
dielectric structures find their ways into microwave circuit
designs, rigorous numerical techniques with high levels of
accuracy and computational efficiency are needed that can
g0 beyond the inherent limitations of approximate methods.
It has been shown in the past two years that the use of
multiresolution expansions in the moment method solution of
electromagnetic problems leads to the generation of highly
sparse linear systems [4]-[6]. This approach eliminates the
traditional bottleneck of the integral-based formulations due
to the fullness of moment matrices. The results reported to
date mostly deal with 2-D or planar structures using one-
dimensional multiresolution expansions. In such problems the
number of unknowns, and therefore the size of the linear
systems, are quite reasonable and the sparsity of the moment
matrices, although favorable, is not a critical factor. However,
in 3-D problems such as dielectric resonators that involve the
numerical solution of volume integral equations, the storage
and inversion of very big, densely populated matrices can
easily exceed the capability of available computing resources.
In such cases, it is vital to take full advantage of any matrix
sparsity if possible.

In this letter we present a 3-D space-domain wavelet-
based moment method formulation of dielectric resonators.
To fully exploit the resulting sparsity of moment matrices,
the bi-conjugate gradient (BiCG) method is used for the
numerical solution of the sparse linear systems. To this end,
an incident field is retained in the formulation of the integral
equation to excite the dielectric structure at a certain frequency.
This approach has the advantage of providing the field dis-
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tribution and resonant frequency simultaneously. Moreover,
by changing the polarization of the incident field, one can
easily study various resonant modes of the structure. To
reduce the computational load due to the numerical evaluation
of moment integrals, we have employed a very interesting
property of the multiresolution analysis. This property is the
fast wavelet algorithm (FWA), which enables one to compute
the multiresolution expansion coefficients at each resolution
level from a knowledge of the coefficients at one higher level.

II. FORMULATION AND NUMERICAL IMPLEMENTATION

Consider a rectangular dielectric resonator of dimensions
a X b x h with a relative permittivity of €,4(r), where r is the
position vector. The background geometry can be any planar
layered substrate configuration, and the z axis is assumed to
be normal to the plane of substrate layers. The finite dielectric
region is modeled by an equivalent volume polarization current
that is defined to be proportional to the total electric field inside
the dielectric resonator and vanishes outside this volume. This
current acts as a radiation source embedded in the background
geometry. Then, the total electric field is expressed in the
following way:

E(r) = —jkoZo ///V Go(r | 7). Jp(r')dv' + Ei(r)
M

where ko and Yy = 1/Z; are the free-space propagation
constant and characteristic admittance, respectively, Ei(r) is
the incident electric field, and G(r | ') is the dyadic Green’s
function of the substrate structure. Thus, a volume integral
equation can be derived for the unknown polarization current.

To obtain a high degree of sparsity in the moment method
implementation, we expand the volume current J,, in a 2-D
multiresolution basis in the z-y plane and a sub-domain puise
basis along the z axis in the following manner:

T =33 aj Fj(dﬁo, ;;%)pq(z) @)
i q

where F,(z,y) is a 2-D multiresolution basis function, do
is the characteristic length of the structure, and p,(z) is a
sub-domain pulse basis function. The construction of 2-D
multiresolution expansions has been discussed in detail in
[7]. Such expansions are generated by dilating and shifting
a 2-D scaling function and three types of horizontal, vertical,
and diagonal 2-D wavelets. By testing the discretized integral
equation using Galerkin’s technique, a linear system of matrix
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equations is obtained. This system is solved iteratively using
a pre-conditioned bi-conjugate gradient (BiCG) method. The
resulting moment matrix is highly sparse, and by performing
a thresholding procedure it can easily be stored using sparse
storage techniques. In addition, due to the vanishing moments
property of wavelet functions, many negligible moment inter-
actions can be predicted in advance and their computation is
spared [8].

In order to speed up the numerical integrations, the fast
wavelet algorithm is implemented. The one- and multidi-
mensional versions of this algorithm have been described
in [9]. The fast wavelet algorithm establishes the following
relations between the multiresolution expansion coefficients
of an arbitrary function f(x):

< fa ¢m,n >= Z hg—2n < fa ¢m+1,k >,

keZ

< fa Tﬁm,n > = Z Gr—2n < f7 d’m-‘rl,k > (3)

kezZ

where ¢y, . () and ¥y, ,(z) are the dilated and shifted scaling
function and wavelet with resolution and shift indices m and
n, respectively, and {h,} and {g,} are discrete sequences
characteristic to the multiresolution analysis. The digital filters
represented by (3) involve a discrete convolution plus a
decimation by two. This equation implies that the scaling
and wavelet coefficients at each resolution level m can be
computed recursively from the scaling coefficients at resolu-
tion level m + 1. Thus, using the fast wavelet algorithm we
can confine the time-consuming task of numerical integration
to the 2-D scaling functions at the highest resolution of the
problem. All the moment integrals at different resolution levels
including inter-level and intra-level interactions can then be
computed recursively by simple discrete convolutions.

ITI. NUMERICAL RESULTS

To validate our formulation, a rectangular dielectric res-
onator of dimensions 10 mm x 8 mm X 5 mm with a relative
permittivity of €., = 20 immersed in the free space has been
considered. The resonator is excited by a normally incident
plane wave with a fixed linear polarization. By changing
the polarization of the incident field, various resonant modes
of the structure are excited. For the geometry under study,
the dominant mode is a TM{, mode assuming that the
largest dimension of the resonator is aligned along the z axis.
By varying the excitation frequency, one can determine the
resonant frequency of each mode, where the stored electric
energy inside the resonator reaches a maximum value,

For the expansion of the polarization current along the z
direction, 1-4 pulses usually provide very satisfactory results.
The Battle-Lemarie multiresolution analysis has been used to
construct the 2-D wavelet expansion in the -y plane [8]. The
characteristic length dy of problem is taken to be the dielectric
wavelength A\, = A¢/,/€;4. The initial resolution level of
mo = 2 is chosen to obtain an initial crude approximation
using 2-D scaling functions, and then the 2-D wavelets at two
resolution levels m = 2,3 are used to further improve the
approximation. The resulting moment matrix, as expected, is

Fig. 1. The structure of moment matrix of a dielectric resonator after
applying a threshold of 1%.
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Fig. 2. Variation of resonant frequencies of the dominant modes of a
dielectric resonator as a function of the aspect ratio h/a.

highly sparse in the sense that a large number of its entries are
very small in magnitude when compared to the largest entry.
Fig. 1 shows the structure of the moment matrix after applying
a threshold of 1%. In this case, the expansion basis consists
of 2 pulse functions and a total of 215 2-D multiresolution
expansion functions, and the sparsity of the moment matrix is
99.22%. Fig. 2 shows the variation of the resonant frequencies
of the first three modes of the dielectric resonator considered
above as a function of the aspect ratio h/a. The results have
been compared to those based on Marcatili’s approximation
[1] and a good agreement is observed.

To better envision the computational savings, we have com-
pared our results with the conventional method of moments
using 3-D pulse expansions. The moment matrix of Fig. 1
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Fig. 3. Comparison of computational cost among various integral-based
techniques.

after thresholding contains 12980 nonzero elements. These
elements can be arranged into a 1-D array and easily stored
using a sparse storage scheme. A conventional MoM formu-
lation using 3-D pulse expansions would typically require an
8 x 6 x 4 discretization mesh for the same geometry, which
amounts to 576 unknowns. Since the resulting moment matrix
is fully populated, all of the 576 elements must be stored
for the inversion process. Thus, the wavelet approach offers
a reduction of more than 96% in the effective size of the
numerical problem. It is also well known that in the conven-
tional method of moments using an iterative lincar system
solver, the most expensive part of the computation. is the
vector-matrix multiplication, which involves a computational
cost of O(N?), N being the number of unknowns. This cost
has been reduced to O(N3/2) through the development of the
fast multipole method (FMM) and has further been improved
to O(N*/3) using multilevel algorithms [10]. The wavelet-
based approach of this letter involves a computational cost of
order of [1 — a(N)]N2, where a(N) is the sparsity of the

moment matrix. Fig. 3 compares the computational costs of
various techniques as a function of the size of the problem.

IV. CONCLUSION

A very efficient sparse moment method formulation has
been presented for the analysis of 3-D planar dielectric struc-
tures, which is based on the concepts of orthonormal wavelet
theory. The combination of sparse matrix techniques and the
fast wavelet algorithm make this approach an effective and
fast tool for the study of 3-D electromagnetic problems.
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